Images in Pneumonology

The therapeutic potential of inhaled-GM-CSF in severe a-PAP

Spyros A. Papiris¹, Lykourgos Kolilekas², Maria Kallieri¹, Eirini Zarvou¹, Georgia Papadaki¹, Katerina Malagari³, Matthias Griese⁴, Effrosyni D. Manali¹

¹2nd Pulmonary Medicine Department, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, Greece ²7th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece ³2nd Department of Radiology, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, Greece ⁴Department of Pediatric Pneumology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Germany

Key words:

- Severe a-PAP
- Treatment
- Inhaled-GM-CSF

Correspondence:

Spyros A. Papiris, Professor of Medicine, Head, 2nd Pulmonary Medicine Department, General University Hospital "Attikon", Medical School, National and Kapodistrian University of Athens, Greece 1 Rimini Street, 12462, Haidari, Greece Tel.: +302105832361, Fax: +302105326414, E-mail: papiris@otenet.gr

Autoantibodies against Granulocyte-Macrophage-Colony-Stimulatingfactor (GM-CSF) disrupt signaling in alveolar macrophages to effectively remove surfactant from the alveoli and lead to autoimmune pulmonary alveolar proteinosis (aPAP). A 39-year-old woman diagnosed with a-PAP was referred to us for further evaluation and treatment initiation with inhaled (i)-GM-CSF^{1,2}. SaO₂ on room air was 70%, DLCO 20% predicted and anti-GM-CSF titer 71.5 µg/ml (normal <3). High-resolution computerized tomography (HRCT) of the chest demonstrated extensive lung parenchyma involvement with ground-glass opacity associated with thickened interlobular lines (cobble stone or crazy paving pattern) differentiating distinctly a-PAP affected lung from non-involved tissue (Figure 1A). Pending the approval of the National-Sanitary-System for the off-label i-GM-CSF administration, the patient was treated every other 4 days with drug (250µg) disponed by other Greek patients, not yet expired. Despite immediate treatment initiation, the patient further deteriorated with high oxygen needs. We re-scheduled treatment to daily i-GM-CSF and plasmapheresis, and considered transfer to abroad for whole lung lavage. The patient gradually recovered with HRCT of the chest showing a clear improvement of ground glass opacities leaving no traction bronchiectasis or other signs of fibrosis (Figure 1B). A few months later she was in complete remission and we currently de-escalate i-GM-CSF.

In conclusion, as we are moving ahead from whole lung lavage treatment into the era of i-GM-CSF for aPAP, clinical paradigm may insight fully complement the studies, eagerly needed but hardly feasible, evaluating i-GM-CSF time and dose responses to refine the management of severe disease³⁻⁵.

FIGURE 1.

Statement

This is to certify that the images have not been previously published and that the patient has provided written permission to publish the case.

REFERENCES

 Tazawa R, Trapnell BC, Inoue Y, et al. Inhaled granulocyte/ macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med

- 2010; 181:1345-54.
- 2. Papiris SA, Tsirigotis P, Kolilekas L, et al. Long-term inhaled Granulocyte Macrophage-Colony Stimulating Factor in Auto-immune Pulmonary Alveolar Proteinosis: Effectiveness, safety, lowest-effective dose. Clin Drug Invest 2014; 34:553-64.
- 3. Papiris SA, Tsirigotis P, Kolilekas L, et al. Pulmonary Alveolar Proteinosis: Time to shift. Expert Rev Respir Med 2015; 9:337-49.
- 4. Tazawa R, Ueda T, Abe M, et al. Inhaled GM-CSF for Pulmonary Alveolar Proteinosis. N Engl J Med 2019; 381:923-32.
- 5. Papiris SA, Griese M, Manali ED. Inhaled GM-CSF for Pulmonary Alveolar Proteinosis. N Engl J Med 2020; 382:197.